- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Feng, Kathleen (2)
-
Melchert, Jackson (2)
-
Raina, Priyanka (2)
-
Barrett, Clark (1)
-
Bhagdikar, Nikhil (1)
-
Carsello, Alex (1)
-
Chen, Po-Han (1)
-
Daly, Ross (1)
-
Donovick, Caleb (1)
-
D’Agostino, Brandon (1)
-
Hanrahan, Pat (1)
-
Horowitz, Mark (1)
-
Horowitz, Mark A. (1)
-
Joshi, Pranil (1)
-
Kong, Taeyoung (1)
-
Koul, Kalhan (1)
-
Liu, Qiaoyi (1)
-
Myers, Zach A. (1)
-
Nayak, Ankita (1)
-
Nyengele, Gedeon (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Amber is a system-on-chip (SoC) with a coarse-grained reconfigurable array (CGRA) for acceleration of dense linear algebra applications, such as machine learning (ML), image processing, and computer vision. It is designed using an agile accelerator-compiler co-design flow; the compiler updates automatically with hardware changes, enabling continuous application-level evaluation of the hardware-software system. To increase hardware utilization and minimize reconfigurability overhead, Amber features the following: 1) dynamic partial reconfiguration (DPR) of the CGRA for higher resource utilization by allowing fast switching between applications and partitioning resources between simultaneous applications; 2) streaming memory controllers supporting affine access patterns for efficient mapping of dense linear algebra; and 3) low-overhead transcendental and complex arithmetic operations. The physical design of Amber features a unique clock distribution method and timing methodology to efficiently layout its hierarchical and tile-based design. Amber achieves a peak energy efficiency of 538 INT16 GOPS/W and 483 BFloat16 GFLOPS/W. Compared with a CPU, a GPU, and a field-programmable gate array (FPGA), Amber has up to 3902x, 152x, and 107x better energy-delay product (EDP), respectively.more » « less
-
Melchert, Jackson; Feng, Kathleen; Donovick, Caleb; Daly, Ross; Sharma, Ritvik; Barrett, Clark; Horowitz, Mark A.; Hanrahan, Pat; Raina, Priyanka (, ACM)The architecture of a coarse-grained reconfigurable array (CGRA) processing element (PE) has a significant effect on the performance and energy-efficiency of an application running on the CGRA. This paper presents APEX, an automated approach for generating specialized PE architectures for an application or an application domain. APEX first analyzes application domain benchmarks using frequent subgraph mining to extract commonly occurring computational subgraphs. APEX then generates specialized PEs by merging subgraphs using a datapath graph merging algorithm. The merged datapath graphs are translated into a PE specification from which we automatically generate the PE hardware description in Verilog along with a compiler that maps applications to the PE. The PE hardware and compiler are inserted into a flexible CGRA generation and compilation toolchain that allows for agile evaluation of CGRAs. We evaluate APEX for two domains, machine learning and image processing. For image processing applications, our automatically generated CGRAs with specialized PEs achieve from 5% to 30% less area and from 22% to 46% less energy compared to a general-purpose CGRA. For machine learning applications, our automatically generated CGRAs consume 16% to 59% less energy and 22% to 39% less area than a general-purpose CGRA. This work paves the way for creation of application domain-driven design-space exploration frameworks that automatically generate efficient programmable accelerators, with a much lower design effort for both hardware and compiler generation.more » « less
An official website of the United States government
